If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4d^2+13d+10=0
a = 4; b = 13; c = +10;
Δ = b2-4ac
Δ = 132-4·4·10
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-3}{2*4}=\frac{-16}{8} =-2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+3}{2*4}=\frac{-10}{8} =-1+1/4 $
| -2.45=(t-(5)(9.8))/(5) | | 4q^2+44q+121=0 | | 3x+60=18x | | x=0.6464 | | x-x-12=180 | | 0.6×n=6 | | G(x)=-4x-9 | | 31-x=20 | | 2.3a-30=-7.7a+10 | | 3(k+4)/7=1 | | 9h^2-12h+4=0 | | x-52=180 | | 0.8(3y+10)=4(y-4) | | 4g^2+28g+49=0 | | x-x-52=180 | | 25a=10a2 | | x+x*3=28 | | 3+a=47 | | 8/a=4 | | x+x*8=54 | | K^2-15=-8k | | -2(8x-9)-6=-5x-8 | | y=-1/3(0)+4 | | .04x,04=x | | 3x^2-6x-504=0 | | x2−7x+12=0. | | .04^=x | | 10-2x=150 | | 3x+5=3(5)+5=20 | | —4/5=x/—35 | | 21=b/3+15 | | 10(3x)=180 |